Dynamical systems approach to Saffman-Taylor fingering: Dynamical solvability scenario
نویسندگان
چکیده
منابع مشابه
Inertial effects on Saffman–Taylor viscous fingering
By CHRISTOPHE CHEVALIER, MARTINE BEN AMAR, DANIEL BONN AND ANKE LINDNER Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS, Université Paris 6, Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75231 Paris cedex 05, France Laboratoire de Physique Statistique, UMR 8550 CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris cedex 05, France E...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولInverse Saffman-Taylor Experiments with Particles Lead to Capillarity Driven Fingering Instabilities.
Using air to displace a viscous fluid contained in a Hele-Shaw cell can create a fingering pattern at the interface between the fluids if the capillary number exceeds a critical value. This Saffman-Taylor instability is revisited for the inverse case of a viscous fluid displacing air when partially wettable hydrophilic particles are lying on the walls. Though the inverse case is otherwise stabl...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2002
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.65.056213